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Abstract

Background—A single subtype of canine influenza virus (CIV), A(H3N8), was circulating in 

the United States until a new subtype, A(H3N2), was detected in Illinois in spring 2015. Since 

then, this CIV has caused thousands of infections in dogs in multiple states.

Methods—In this study, genetic and antigenic properties of the new CIV were evaluated. In 

addition, structural and glycan array binding features of the recombinant hemagglutinin were 

determined. Replication kinetics in human airway cells and pathogenesis and transmissibility in 

animal models were also assessed.

Results—A(H3N2) CIVs maintained molecular and antigenic features related to low 

pathogenicity avian influenza A(H3N2) viruses and were distinct from A(H3N8) CIVs. The 

structural and glycan array binding profile confirmed these findings and revealed avian-like 

receptor-binding specificity. While replication kinetics in human airway epithelial cells was on par 
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with that of seasonal influenza viruses, mild-to-moderate disease was observed in infected mice 

and ferrets, and the virus was inefficiently transmitted among cohoused ferrets.

Conclusions—Further adaptation is needed for A(H3N2) CIVs to present a likely threat to 

humans. However, the potential for coinfection of dogs and possible reassortment of human and 

other animal influenza A viruses presents an ongoing risk to public health.
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While influenza viruses exhibit species-specific determinants, sporadically, they cross the 

species barrier, rapidly adapt to a new host, and establish new lineages. Despite early reports 

showing the presence of antibodies against human influenza viruses in dogs [1, 2], there 

were no documented reports of canine influenza virus (CIV) infections until 2004, when the 

first CIV was identified in racing greyhound dogs in Florida [3]. Molecular and antigenic 

analyses revealed that all genes of the A(H3N8) virus isolated from infected dogs were 

closely related to equine influenza viruses [3]. The A(H3N8) virus spread to dogs in other 

states and continues to show limited circulation in the United States, especially among dogs 

housed in humane shelters [4].

The first evidence of A(H3N2) CIV in domestic dogs displaying respiratory symptoms 

occurred in South Korea in 2007. Unlike the A(H3N8) virus, all genes of the A(H3N2) CIV 

showed >95.5% nucleotide identity with Eurasian lineage avian influenza A viruses (IAVs) 

circulating in wild and domestic birds [5]. The virus spread widely among dogs in South 

Korea, parts of China, and Thailand. In April 2015, an A(H3N2) virus that was genetically 

similar to CIVs circulating in Asia was isolated from an infected golden retriever in Cook 

County, Illinois. According to the updates posted by Animal Health Diagnostic Center, 

Cornell University College of Veterinary Medicine, the virus has since spread to multiple 

states, causing respiratory disease in thousands of dogs across the United States [51].

Besides the 2 major subtypes of CIV, A(H3N8) and A(H3N2), other IAVs, including 2009 

pandemic A(H1N1) [6, 7], A(H5N1) [8], A(H5N2) [9], and A(H9N2) [10], have been 

isolated from dogs. Further evidence that dogs can be infected with human influenza viruses 

comes from serological analyses [11, 12], as well as experimental infections [13, 14]. 

Influenza viruses have a segmented genome, which allows for reassortment in coinfected 

hosts and emergence of novel influenza virus strains. Since dogs are close human 

companions, the notion that new strains could arise in dogs is concerning from a public 

health standpoint. No human infections have been reported with CIVs to date; nonetheless, 

continuous surveillance and assessment of the antigenic and pathobiological features of 

novel viruses is important to minimize and mitigate the possibility of zoonotic infections. 

Pigs are susceptible to IAVs from a variety of different hosts and pose a risk of interspecies 

transmission of new reassortant viruses. A recent study showed that the A(H3N2) CIV, 

newly isolated in the United States, displayed limited replication in the lower respiratory 

tract of inoculated swine and was not transmitted to contact pigs [15]. Here, we analyzed the 

genetic, antigenic, and structural features of A(H3N2) CIVs isolated in the United States. 
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Furthermore, in vitro replication in a human airway epithelial cell line (Calu-3), 

pathogenesis in mice and ferrets, and transmissibility in ferrets were assessed.

MATERIALS AND METHODS

Viruses

The A(H3N2) viruses A/canine/IL/12191/2015 and A/ Switzerland/9715293/2013 were 

propagated in eggs at 35°C for 48 hours. A/Brisbane/59/2007 (H1N1) was propagated in 

Madin-Darby canine kidney cells at 37°C for 48 hours. Details are included in the 

Supplementary Information.

Molecular and Phylogenetic Analysis

A/canine/IL/12191/2015 virus RNA was reverse transcribed with random hexamer primers 

and amplified by PCR using universal IAV primers [16]. Full-length open reading frames 

(ORFs) were generated by Illumina sequencing. Consensus sequences were assembled and 

BLAST analysis of each gene was performed in the GISAID database to identify the closest 

related viruses. Gene sequences of related viruses were aligned to A/canine/IL/12191/2015 

virus sequences, using MUSCLE to create full-length ORF alignments. The full-length ORF 

sequences of A/canine/IL/11613/2015 virus were generated by Cornell University (kindly 

provided by Dr Amy Glaser) and included in phylogenetic analysis. Alignments were 

imported into MEGA 5.0, and phylogenetic trees were generated using the generalized time 

reversible model and maximum likelihood method with 1000 bootstrap replicates. 

Hemagglutinin (HA) protein sequence alignments included human A(H3N2) viruses for 

comparisons of the A(H3N2) CIV receptor-binding and putative antigenic sites.

Determination of HA and Neuraminidase (NA) Structures and Glycan Array Analyses

A/canine/IL/11613/2015 virus recombinant HA and NA crystallization, glycan microarray 

printing and recombinant HA (recHA) analyses have been described elsewhere [17, 18]. 

Details are included in Supplementary Information. Supplementary Table 2 lists glycans 

used in these experiments as well as a tabulated qualitative assessment of binding for each 

protein analyzed.

Antigenic Characterization

Virus-specific polyclonal antiserum against A/canine/ IL/12191/2015 virus was generated in 

serologically naive ferrets immunized intranasally with 106.0 50% egg infectious doses 

(EID50) of virus diluted in PBS. At 14 days post-inoculation, each ferret was boosted with 

2048 HAU of virus mixed with Titermax Gold Adjuvant (Sigma-Aldrich, St. Louis, MO) 

and antiserum was collected 14 days post-boost. A/canine/ IL/12191/2015 virus was 

compared by hemagglutination inhibition (HI) assay to panels of antiserum against other 

A(H3N2) IAVs and corresponding reference viruses [19]. Human immune serum, pooled 

from adults (19–49 years old) who received an inactivated 2013–2014 seasonal influenza 

vaccine, was included in the analysis. The human sera were acquired through a contract and 

received as anonymous samples, and, thus, were exempt from review by the Centers for 

Disease Control and Prevention’s (CDC) Institutional Review Board.
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Animal Experiments

Pathogenicity in mice and ferrets, and transmission efficiency between cohoused ferrets 

were evaluated as described elsewhere [20, 21]. Details are included in Supplementary 

Information.

Cell Culture and Viral Replication

Human airway epithelial Calu-3 cells, obtained from American Type Culture Collection 

(ATCC; Manassas, VA), were cultured on 12-mm transwell inserts as described previously 

[22]. Briefly, Calu-3 cells grown on transwells were inoculated apically in triplicate with A/

canine/IL/12191/2015 (H3N2) virus, A/ Brisbane/59/2007 (H1N1) virus, or A/Switzerland/

9715293/13 (H3N2) virus at a multiplicity of infection of 0.01 50% EID50/ cell for 1 hour, 

washed, and then incubated at 37°C in a 5% CO2 atmosphere. Viral titers in cell culture 

supernatant were determined by titration in eggs.

RESULTS

Phylogenetic and Genetic Characterization

Phylogenetic analysis of A/canine/IL/12191/2015 and A/ canine/IL/11613/2015 virus genes 

showed that these viruses were closely related to A(H3N2) CIVs isolated in South Korea in 

2011–2012 (Figure 1 and Supplementary Figures 1–7) and clustered in a larger group 

containing isolates from China and Thailand. While the US isolates of A(H3N2) CIVs 

showed 95% nucleotide identity to the duck A(H3N2) viruses, each gene segment of the US 

CIVs had >99% nucleotide identity to recently isolated South Korean CIVs, suggesting that 

the virus was recently transmitted between South Korean and US dogs.

The NA gene segment of US CIVs had amino acid deletions at positions 76 and 77 that were 

also observed in many related CIVs from South Korea and China and did not possess any 

known markers of resistance to NA inhibitors. The matrix 2 protein contained 2 mutations 

(Asn30Asp and Thr215Ala) associated with increased virulence of avian IAVs in mice but 

no molecular markers associated with resistance to adamantane. The PB2, PB1-F2, and NS 

proteins each had mutations at positions previously reported to enhance polymerase activity, 

infectivity, and increased virulence of H5N1 avian IAVs in mice [23]. The PA and NP 

proteins did not have mutations of known significance.

HA Structure

The 3-dimensional HA structure of the trimeric ectodomain from A/canine/IL/11613/2015 

virus HA was determined by X-ray crystallography at a 3.0-Å resolution (Supplementary 

Table 1). Seven asparagine-linked glycosylation sites (NXS/T) were predicted in the CIV 

HA monomer; however, no interpretable carbohydrate electron density was observed at any 

location (Figure 2A). The HA of A/canine/IL/11613/2015 virus had 3 amino acid 

differences as compared to the HA of the A/ canine/IL/12191/2015 virus. The Ser46Pro 

difference, located near antigenic site C, could result in the loss of the glycosylation site at 

position 45 in A/canine/IL/12191/2015 virus HA (all positions stated indicate H3 structural 

numbering). Gly218Glu and Ile335Leu differences were identified near antigenic site D and 

in the HA2 portion of the protein, respectively (Figure 2A). The CIV HA was produced in 
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the HA0 form, using a baculovirus expression system. For structural studies, the HA was 

digested with trypsin to remove the trimerization tag, which also cut the HA into the active 

HA1/HA2 form. Comparison of the CIV HA monomer to an avian H3 HA (PDB: 1MQL) 

[24] and a recent human H3 HA (PDB: 4WE8) [25] revealed a highly similar structure, with 

the Cα atoms superimposing to give a root mean square deviation of 0.94 Å and 1.03 Å, 

respectively.

Receptor-Binding Site Analysis

Similar to other IAVs, the consensus receptor-binding site (RBS) was composed of three 

structural elements: a 190-helix (residues 188–94), 220-loop (residues 220–8), and 130-loop 

(residues 131–9). Highly conserved residues Tyr98, Trp153, His183, and Tyr195 were 

identified at the base of the pocket (Figure 2B). The HA sequences from A/canine/IL/

12191/2015 and A/canine/IL/11613/2015 viruses primarily retained amino acids conserved 

among Eurasian lineage low-pathogenicity avian H3N2 IAVs. Amino acids in and around 

the RBS were typical of avian-origin IAVs, with signature Gln226 and Gly228 suggesting 

preferential binding to avian-like α2,3-linked sialic acid (SA) receptors. The HA proteins 

had a single mutation of Ser159Asn, which is an adaptation potentially resulting in increased 

binding to α2,6-linked SA receptors. This mutation was found in the majority of A(H3N2) 

CIVs in the databases. Similar to viruses detected in eastern Asia, the US CIVs had a Leu at 

position 222, differentiating them from avian H3 IAVs, which typically have a highly 

conserved Trp at this position. Interestingly, Leu at position 222 was also shared among 

A(H3N8) CIVs circulating in the United States, suggesting its potential role in adaptation of 

these viruses to dogs [26–28]. Glycan-binding analyses of recombinant CIV HA revealed a 

strong binding preference for the α2–3-linked SAs and mixed α2–3/α2–6 branched SAs 

(numbers 65 and 66). It also showed a relatively strong binding to N-glycolylneuraminic 

acid–containing glycans (number 71; Figure 2C and Supplementary Table 2).

NA Structure

The crystal structure was determined to a 1.8-Å resolution (Supplementary Table 1), with 

good electron density for most of the residues, except the 150-loop area. The virus strain 

used for recombinant NA studies, A/canine/IL/11613/2015, had an NA identical to that of A/

canine/IL/12191/2015 virus. The CIV NA structure was a typical box-shaped tetrameric 

association of identical monomers, containing six 4-stranded, antiparallel β-sheets that 

formed a propeller-like arrangement (Figure 3), as previously described [29]. One calcium 

ion-binding site, conserved in all known influenza A and B virus NA loops [30, 31], was 

observed in CIV NA. Calcium ions were previously shown to be critical for the 

thermostability and activity of influenza virus NAs, and this conserved metal site was 

proposed to be important in stabilizing a reactive conformation of the active site by 

otherwise flexible loops [30, 31]. Although CIV NA had 6 potential N-linked glycosylation 

sites at Asn86, Asn146, Asn200, Asn234, Asn313, and Asn402 in the final model, 

interpretable glycan density was only observed at Asn146, Asn200, and Asn234. Residue 

Asn146, which was situated on the membrane-distal surface close to the active site, was the 

only glycosylation site conserved among all other influenza A and B virus NAs [32, 33].
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Antigenic Characterization

HI assay demonstrated that the HA of A/canine/IL/12191/2015 virus was antigenically 

distinct from the HA of A(H3N8) CIVs previously isolated from dogs in the United States 

(Table 1). Although weak reactivity was detected between A/canine/ IL/12191/2015 virus–

generated antisera and A(H3N8) CIV, heterologous HI titers were 32-fold lower as 

compared to the homologous virus titer. Likewise, a 16-fold reduction in the heterologous 

titer of antisera produced against A/canine/FL/43/2004 (H3N8) virus was observed when 

tested with A/canine/IL/12191/2015 (H3N2) virus, as compared to the homologous titer, 

indicating 2-way specificity of antiserum produced against these canine viruses. The HA of 

A/canine/IL/12191/2015 virus shared about 78% amino acid similarity with A(H3N8) CIVs 

currently circulating in the United States and had on average >70 amino acid differences in 

the mature HA protein as compared to recent A(H3N8) viruses, including at least 15 

residues identified in putative antigenic sites. Compared with closely related South Korean 

viruses, A/canine/IL/12191/2015 virus had <6 amino acid changes in the HA protein, 

suggesting the likelihood of antigenic relatedness of these viruses. Interestingly, antiserum 

generated against a recent avian-like A(H3N8) isolate, A/harbor seal/NH/179629/2011, was 

more broadly cross-reactive with both CIVs, suggesting antigenic relatedness between this 

avian lineage and genetically distant canine strains. Ferret antiserum produced against the 

seasonal vaccine IAV strain, A/Switzerland/9715293/2013, as well as human serum pooled 

from adults who received an inactivated 2013–2014 seasonal influenza vaccine, did not react 

with any of the animal-origin viruses.

Pathogenicity in Mice

Unlike the majority of seasonal A(H1N1) and A(H3N2) viruses, most avian influenza 

viruses that can bind to α2,3-linked SA receptors, do not require prior adaptation to cause 

disease in mice [34]. Mice inoculated with 107.2 EID50 of A/canine/ IL/12191/2015 virus 

displayed signs of infection, including severe weight loss, ruffled hair, and hunched posture. 

Except for 1 mouse, which was euthanized on day 4 after inoculation because of excessive 

weight loss, all of the animals recovered from the infection. Mice inoculated with 106.0 

EID50 of virus displayed transient weight loss (up to 9%) and no other signs of morbidity 

(Figure 4A). Groups of 3 mice were inoculated with serial dilutions of virus, and virus titers 

in lungs collected on day 3 after inoculation were used to calculate the 50% mouse 

infectious dose (MID50). A/canine/IL/12191/2015 virus efficiently replicated in mouse lungs 

without prior adaptation. Detectable virus was observed in mice inoculated with doses >102 

EID50, with the highest mean lung titer reaching 107.1 EID50/mL (Figure 4B). By 6 days 

after inoculation, mice inoculated with 107.2 EID50 still had detectable virus in lungs (mean 

titer, 104.7 EID50/mL; data not shown). The MID50 for the A(H3N2) CIV was 102.5 EID50.

Pathogenicity and Transmissibility in Ferrets

Ferrets inoculated with A/canine/IL/12191/2015 (H3N2) virus exhibited minimal weight 

loss (mean maximum, 3.1%) and an increase in body temperature (mean maximum, 1°C 

above baseline), and 2 of 3 infected ferrets exhibited mild lethargy (data not shown). None 

of the infected ferret had respiratory symptoms, such as sneezing or nasal discharge; 

however, ocular drainage was observed in 1 ferret on days 2–9 after inoculation. A mean 
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peak titer of 106.8 EID50/mL was found in nasal washes on day 1 after inoculation, and virus 

was cleared in all animals after 7 days (Figure 5A). All inoculated ferrets seroconverted (HI 

titers on day 27 after inoculation ranged from 320 to 640). At day 3 after inoculation, the 

virus was detected in the nasal turbinates and trachea of all inoculated ferrets, with average 

titers of 106.1 EID50/mL and 105.0 EID50/g of tissue, respectively (Figure 5B). Only 1 ferret 

had low levels of virus in the lungs (102.3 EID50/g). No virus was detected in rectal swab 

samples collected for up to 5 days after inoculation (data not shown), but an intestine sample 

from one of the ferrets had low levels of virus (102.7 EID50/g) on day 3 after inoculation. No 

virus was recovered from other extrapulmonary tissues, indicating that the canine A(H3N2) 

virus did not replicate systemically.

The fact that the CIV replicated very efficiently in the upper respiratory tract prompted us to 

evaluate the transmissibility of the virus in a direct-contact setting. The virus was 

transmitted in 1 of 3 pairs of cohoused animals within 3 days, as evidenced by a high virus 

load in nasal wash samples (106.3 EID50/mL; Figure 5A) and seroconversion (HI titer on day 

26 after contact, 640). The infected ferret displayed minimal weight loss (4.9%) and cleared 

the virus by day 9 after contact.

Replication in Calu-3 Cells

The human bronchial epithelial cell line (Calu-3), when grown on transwell inserts, 

resembles the human airway epithelium, as the cells form tight junctions to achieve 

transepithelial resistance [35]. Calu-3 cells were inoculated with 0.01 EID50/cell of A/ 

canine/IL/12191/2015 virus, A/Brisbane/59/2007 (H1N1) virus, or A/Switzerland/

9715293/2013 (H3N2) virus. All viruses productively infected Calu-3 cells at 37°C (Figure 

6). The A(H3N2) CIV replicated to similar titers as the seasonal A(H1N1) virus, reaching 

titers of ≥108.5 EID50/mL at 72 hours after inoculation, with no statistically significant 

differences between these viruses at any of the time points. In comparison, the seasonal 

A(H3N2) virus replicated less efficiently, reaching a mean average titer of 107.8 EID50/mL 

by 72 hours after inoculation; however, statistical significance between the seasonal 

A(H3N2) virus and CIV was only observed at the 24-hour time point.

DISCUSSION

The emergence of a new IAV in domestic animals represents a major public health risk 

because it provides the opportunity for zoonotic infections to occur in pet owners or persons 

with high levels of exposure to animals, potentially allowing novel IAVs to adapt to humans. 

High nucleotide similarity between the A(H3N2) CIVs isolated in the United States and 

those recently detected in South Korea and China is suggestive of a direct transmission event 

or introduction of this virus into the United States in early 2015. Generally, avian IAVs bind 

preferentially to cells expressing α2,3-linked SAs, while human IAVs preferentially bind to 

α2,6-linked SAs found on cells in the upper respiratory tract of humans [36] and ferrets 

[37]. Upper and lower respiratory tracts of dogs largely express α2,3-linked SA receptors [5, 

38], which likely facilitated the transmission of avian A(H3N2) influenza virus to dogs. The 

HA of the A/ canine/IL/12191/15 and A/canine/IL/11613/2015 viruses possessed the key 

residues (Gln226 and Gly228) necessary for α2,3-linked SA binding. Despite a few HA 
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changes associated with mammalian adaptation (ie, Ser159Asn and Trp222Leu), these CIV 

HAs exhibited an avian receptor-binding preference. In addition, few markers of enhanced 

virulence were identified in the NA or internal proteins of this virus, indicating a lack of key 

mutations associated with increased pathogenicity for avian influenza viruses or adaptation 

to humans.

Dogs infected with A(H3N2) CIVs typically develop signs of infection, including fever, 

lethargy, anorexia, nasal/ocular discharge, sneezing, and cough, and transmission of virus 

between dogs is efficient [39]. Interspecies transmission of A(H3N2) CIV has been 

demonstrated from dogs to cats, while transmission from dogs to ferrets was not observed in 

an experimental setting [40, 41]. Ferrets are naturally susceptible to human and avian 

influenza viruses and develop clinical signs similar to those seen in infected humans [34]. In 

this study, inoculated ferrets displayed minimal morbidity and no respiratory signs. A/

canine/IL/12191/15 (H3N2) virus was not transmitted between all cohoused pairs of ferrets. 

It is possible that the lack of respiratory symptoms may have limited the quantity of virus 

expelled from the infected animals and contributed to the lack of efficient transmission [42, 

43]. Despite the lack of overt respiratory symptoms, A/canine/ IL/12191/15 (H3N2) virus 

replicated most efficiently in the nasal turbinates and trachea, but low levels of virus were 

detected in the lungs. Previous studies of earlier strains of A(H3N2) CIVs (A/canine/Korea/

01/2007 and A/canine/Korea/LBM412/2008) in ferrets demonstrated some differences in 

phenotypes as compared to the virus evaluated here. The 2007 A(H3N2) CIV replicated less 

efficiently in ferret nasal samples but was transmitted more frequently between paired ferrets 

in direct contact (2 of 3 pairs [40] and 3 of 3 pairs [44]). The 2008 A(H3N2) CIV replicated 

more efficiently, was transmitted between animals in 3 of 6 ferret pairs, and caused 

substantially greater morbidity (15% weight loss) in inoculated ferrets [45] as compared to 

the 3.1% weight loss found using the A/canine/IL/12191/2015 virus reported here.

Antigenic differences between A(H3N8) and A(H3N2) CIVs reported in this study and the 

results of a recent study in mice [46] suggest that dogs previously vaccinated with A(H3N8) 

CIV vaccine may not be protected from infection or disease caused by the A(H3N2) CIV. 

Unless dogs are vaccinated with one of the currently available A(H3N2) CIV vaccines, the 

lack of immunity to the new A(H3N2) CIV may allow for additional opportunities for 

coinfection of this subtype with other influenza viruses. Serological analysis of dog serum 

samples showed that, in some cases, dogs tested positive for both canine A(H3N2) and 2009 

pandemic A(H1N1) viruses, suggesting the possibility of coinfection with both viruses [47]. 

In fact, reassortants of A(H3N2) CIV and 2009 pandemic A(H1N1) viruses have been 

reported. An A(H3N1) virus with an HA gene from an A(H3N2) CIV and 7 genes 

homologous to 2009 pandemic A(H1N1) virus was isolated from dogs in South Korea [48]. 

This new reassortant virus was less pathogenic than classical CIV in experimentally infected 

dogs. An A(H3N2) CIV isolate containing a matrix gene from 2009 pandemic A(H1N1) 

virus (CIV/H3N2mv) was also isolated from dogs [49]. Ferrets and dogs experimentally 

infected with CIV/H3N2mv displayed signs of respiratory infection, and the virus had the 

capacity of efficient transmission between cohoused dogs and cohoused ferrets.

Overall, A/canine/IL/12191/2015 virus was capable of efficient replication in vitro in human 

airway epithelial cells and in the upper airways of ferrets and mice but was unable to be 
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transmitted efficiently, likely owing to its avian receptor-binding properties. Receptor 

specificity is considered a major hurdle for influenza virus to adapt to humans and acquire 

the ability to sustain transmission in the population [50]. Evidence indicating that dogs can 

be infected with both canine and human influenza viruses raises the concern that a 

reassortant virus could emerge that is capable of infecting humans. The emergence of this 

new A(H3N2) CIV and the continued antigenic drift and reassortment [28] that it 

demonstrates in mammals warrants global surveillance and a better understanding of the 

pathogenesis and the potential for transmission of these viruses. Risk assessments such as 

these will improve our pandemic preparedness and will help mitigate the risk of zoonotic 

influenza virus infections and the threat to public health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Phylogenetic tree of the canine influenza virus hemagglutinin genes. The phylogenetic tree 

was generated using a general time reversible model and maximum likelihood method with 

1000 bootstrap replicates. Bootstrap values of ≥60 are shown at branch nodes. The scale bar 

represents nucleotide substitutions per site.
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Figure 2. 
Structure and glycan array binding of canine influenza virus hemagglutinin (HA). A, 

Cartoon representation of the HA monomer. HA1 is green, and HA2 is cyan. The predicted 

glycosylation sites on HA1 (A38, A45, A81, A165, and A285) and HA2 (B6 and B154) are 

labeled and shown as sticks. The amino acid differences between A/canine/ IL/12191/2015 

and A/canine/IL/11613/2015 viruses are shown in red sticks. B, Binding site elements. The 

130-loop is purple, the 190-helix is yellow, and the 220-loop is red. Conserved residues are 

shown in green sticks. The amino acids discussed in the text are labeled and shown in sticks. 

C, Glycans on the microarray are grouped according to sialic acid linkage, as follows: α2–3 

SA, blue; α2–6 SA, red; α2–6/ α2–3 mixed SA, purple; N-glycolyl SA, green; α2–8 SA, 

brown; β2–6 and 9-O-acetyl SA, yellow; and asialoglycans, gray (Supplementary Table 2). 

Error bars reflect the standard error in the signal for 6 independent replicates on the array.
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Figure 3. 
Overall structure of canine influenza virus neuraminidase. The active site is shown with an 

arrow. Predicted glycosylation sites are shown in sticks.
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Figure 4. 
Pathogenicity of A(H3N2) canine influenza virus in mice. A, Groups of 5 mice were 

intranasally inoculated with 107.2 or 106.0 50% egg infective doses (EID50) of A/canine/IL/

12191/2015 (H3N2) virus and observed for signs of morbidity and mortality for 14 days. 

The percentage weight loss (±SD) is shown. B, Additional groups of 3 mice were inoculated 

with 107.2 EID50 or serial 10-fold dilutions ranging from 107.0 to 101.0 EID50 of virus and 

were euthanized 3 days after inoculation, when lung tissues were collected for viral titer 

determination. Viral titers are presented as log10 EID50/mL (±SD). The limit of detection is 

1.5 log10 EID50/mL.
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Figure 5. 
Pathogenicity and transmission of A(H3N2) canine influenza virus in ferrets. Six ferrets 

were intranasally inoculated with 107.1 50% egg infective doses (EID50) of A/canine/IL/

12191/2015 virus. A, The following day, a serologically naive ferret was placed in the same 

cage with an inoculated ferret for the assessment of virus transmission between 3 ferret pairs 

in direct contact. Nasal wash titers from individual ferrets are presented. Viral titers are 

presented as log10 EID50/mL. B, Three inoculated ferrets were euthanized 3 days after 

inoculation, and tissues were collected for assessment of viral titers. Blood and nasal 

turbinate viral titers are presented as log10 EID50/mL, and kidney, spleen, liver, intestines 

(pooled duodenum, jejunoileal loop, and descending colon), olfactory bulb, brain (pooled 

anterior and posterior brain), lung, and trachea are presented as log10 EID50/g of tissue. The 

limit of detection is 1.5 log10 EID50 per g or mL.
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Figure 6. 
Replication kinetics of canine A(H3N2) virus in human airway epithelial (Calu-3) cells. 

Calu-3 cells were grown on transwell inserts and were inoculated apically in triplicate with a 

multiplicity of infection of 0.01 of A/canine/ IL/12191/2015 virus (CIV/12191), A/Brisbane/

59/2007 (H1N1) virus (Bris/59), or A/ Switzerland/9715293/2013 (H3N2) virus (Switz/

9715293). The cells were incubated at 37°C, and culture supernatants were collected 2, 12, 

24, 48, and 72 hours after inoculation for viral titer determination in eggs. Statistical 

significance of the difference between the titers of the canine and each seasonal virus at each 

time point was determined by 2-way analysis of variance with the Bonferroni post hoc test. 

No statistically significant difference was observed between CIV/12191 and Bris/59 viruses. 

**P < .01 for comparison between CIV/12191 and Switz/9715293 viruses.
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